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ABSTRACT

The Direct Statistical Approach (DSA) is a model for the optimization of parameters governing the control of the

particle population in fixed source Monte Carlo particle transport calculations. It is currently applied to neutron and

photon problems. The particle population is controlled at surfaces in phase space by means of the well known splitting

and Russian roulette (RR) techniques with the amount of splitting/RR defined by the ratios of parameters

("importances") attached to the volumes ("cells") on either side of the surfaces. Biasing methods that change the weight

of the particle tracks may be present but do not form part of the optimization, and splitting or RR is carried out

independently of the weight of the track impinging on the surface. Thus if biasing is present, undesirable weight

variations may still occur even with an optimum particle population control.

The DSA is based on a rigorous mathematical derivation of the second moment of the population and of the time

per particle history. Under the above circumstances ("weight–independent splitting/RR") both these quantities are

separable into a coefficient part that depends only on the characteristics of the particular problem (including possible

biasing) and a function part that depends only on the phase space cell importances. It is thus a simple step to optimize

the importances with the objective of minimizing the quality factor (the product of the second moment and time).

The coefficient parts of the second moment and time functions are estimated by Monte Carlo. Having established

first estimates of these quantities, a minimization is carried out and a first set of "optimum" cell importances is found.

These importances are then employed in a new Monte Carlo calculation that continues to accumulate estimates of the

coefficients. At one point a second minimization is carried out and a second set of "optimum" cell importances is found

that is then employed to further accumulate estimates of the second moment and time function coefficients, etc. This is

the adaptive aspect of the DSA. Because of the statistical difficulty of estimating the second moment function

coefficients (due to the necessity of estimating the square of the adjoint flux when a track crosses a surface), an

approximation is employed. This approximation (named the "enhanced point–surface approximation") has proved to be

excellent in most problems. Under these circumstances the above iterative learning procedure generally reaches the

optimum in a few steps. The existence of a single integral parameter, the quality factor (that is estimated both directly

and indirectly through the second moment and time function coefficients), allows the user to verify that the optimum set

of cell importances has in fact been reached.

Recently with the objective of eliminating the weight variations present with biasing, a new DSA model has been

developed that employs weight control rather than simple population control. In this model the amount of splitting/RR at

a surface depends on the weight of the track impinging on the surface. In particular splitting or RR is carried out in such

a way that the weight of the progeny that enter the new phase space cell is constant for that cell. These weights are the

variables that it is desired to optimize. As is well known, under these circumstances the second moment is not

separable. However an approximation (named the "non–integer approximation") has been introduced that renders the

second moment separable. Under these circumstances the above phase space cell weights have been optimized

employing a learning procedure for estimating the second moment and time function coefficients similar to the

procedure for weight–independent splitting/RR. This new weight–dependent DSA model is currently being tested.
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I. DELINEATING THE PROBLEM AND HISTORICAL DEVELOPMENT

The DSA ("Direct Statistical Approach") is a route towards optimizing (in a limited sense) Monte Carlo

calculations and is currently employed on fixed source radiation transport problems. The radiation dealt with is at

present neutrons and photons in the energy range < 20 MeV. The DSA employs as vehicle the code MCNP [currently

version 4a – (Ref. 1)]. The DSA is due to Dubi, who in a series of original papers applied basic statistical

considerations to the technique of surface splitting and Russian roulette (RR). This theoretical development culminated

in a general model (Ref. 2).

As is well known splitting decreases the second moment whilst RR increases it. The other face of the coin is that

splitting increases the CPU time whilst RR decreases it. There is an optimum amount of splitting: less and the saving in

CPU time is more than offset by the rise in the second moment, more and the lowering in the second moment is more

than offset by the rise in CPU time. The DSA describes in a precise mathematical fashion the second moment per source

history S2 (or the population second moment) and the time per source history τ, in terms of the splitting/RR parameters.

The quality factor, q, defined as the product of S2 and τ, is an appropriate measure of the inverse of the statistical

efficiency of the Monte Carlo calculation (Ref. 3). Thus it is necessary to minimize q with respect to the splitting/RR

parameters. This is possible because under the conditions described in Ref. 2 (the same amount of splitting or RR is

carried out at a surface independent of the weight of the track arriving at the surface), both the second moment and time

functions are, to all intents and purposes, separable into a problem–dependent coefficient part and a functional

dependence on the splitting/RR parameters.

Over the last years the DSA has undergone further developments. These essentially concern substituting a closed–

volume cell model for the original surface parameter model (Refs. 4, 5 and 6) and including all track bifurcations (as

well as those due to the surface splittings) in the mathematical description of the second moment and time (Ref. 7). Also

in Ref. 7 another limitation that previously did not allow tracks to experience splitting/RR at surfaces or cell boundaries

after making a score, was removed. This seems to have marked a plateau in the development of the DSA weight–

independent splitting/RR model. This model is summarized in the next paragraph.

Splitting/RR is executed at boundaries between closed volumes or cells in phase space (currently space and

energy) according to the ratios of parameters ("importances") attached to the cells on either side of the boundary. Other

variance reduction methods such as source or transport biasing may be present but are fixed (i.e. not optimized). The

splitting/RR is independent of the weight of the track arriving at the boundary, thus it has purely the role of population

control. The DSA aims to find the optimum set of cell importances. To do this the coefficients of the second moment

and time functions are generated using Monte Carlo. A minimization code is then employed to find the set of cell

importances that minimizes q (Ref. 6). This procedure is described later.

Of course it is not very efficient to split or Russian roulette tracks with widely varying weights by the same

amount (at each cell boundary). When other variance reduction methods are present that alter the tracks' weight, a

method such as the well known weight window is indicated that acts as a weight as well as a population control. To

attempt to deal with problems involving weight variations other than those resulting from cell boundary splitting/RR, a

new DSA model has been developed that splits and Russian roulettes at (phase space) cell boundaries according to the

weight of the track arriving at the surface (Ref. 8). This model requires the weight after splitting or Russian roulette in

each cell to be a particular value called the weight line or the starting weight. (This is different from the weight window

which allows the weight to be in a particular range of values.) As before, other variance reduction methods that are

present [biasing, DXTRAN spheres (Ref. 1), etc.] must have fixed parameters – the new DSA weight–dependent

model aims to find the optimum set of cell starting weights only. Although under these circumstances the second

moment is not separable, an approximation (named the "non–integer approximation") has been introduced that renders it

separable and therefore makes the optimization practicable. This approximation represents a first approach.

Notwithstanding, results so far look promising. Again the coefficients of the second moment and time functions are
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generated using Monte Carlo and a minimization code is employed to find the set of cell starting weights that minimizes

q.

II. THE SECOND MOMENT AND TIME FUNCTIONS

II.A. The  DSA weight–independent cell importance model

The second moment, S2, consists of three kinds of terms: ∆o, ∆i, and Γ  representing the contributions from

splittings at cell boundaries, volumetric bifurcations and direct detector scores respectively. (See Fig. 1 in which there is

a general source and detector distribution that are not necessarily separated, and a general configuration of cells J or K

with source cells j0).

∆o       =      ∑
j0

 F(j0) ∑
L

Ii=1

  ∑
2N

Io=1

 
 
 coef−d(j0,Ii/Io) . 

1
F(K) .

int(G(J,K))
G(J,K) .[2.G(J,K) − int(G(J,K)) − 1]  



          (1)

∆i       =      ∑
j0

 F(j0) ∑
L

Ii=1

   
 
 coef−d(j0,Ii) . 

1
F(J)

  


                                                                                             (2)

Γ       =      ∑
j0

 F(j0) 

 






coef−g(j0) . 

1
F(j0)    +   ∑

2N

Io=1

   
 
 coef−g(j0,Io) . 

1
F(K)  

 

 




                                                 (3)

and

S2       =       ∆o       +       ∆i       +       Γ                                                                  (4)

Expressions (1),  (2) and (3) are expressions (27), (30) and (36) respectively in Ref. 7.

In expression (1) each term within the summation brackets represents the contribution from splittings at the

boundary between cells J and K with importances F(J) and F(K) respectively. [and G(J,K) = F(K)/F(J)]. The pair of

variables: Ii/Io represents the boundary between cells J and K, thus the double sum over Ii and Io represents a sum over

all cell boundaries.

In expression (2) each term within the summation brackets represents the contribution from bifurcations within

each cell J. The variable Ii represents bifurcations of a certain type within cell J, thus the sum over Ii represents a sum

over all bifurcation types and over all cells.

In expression (3) each term within the inner summation brackets represents the contribution from detector scores

within each cell K. The sum over Io represents a sum over all cells. The first term within the outer summation brackets

represents the contribution from detector scores within each source cell j0.

The coef–.... variables are problem–dependent coefficients whose values must be estimated:

– coef–d(j0,Ii/Io) in expression (1) involves the product of the square of the track's weight as it crosses a cell

boundary and the square of the adjoint flux at the crossing point [see expressions (25) and (26) in Ref. 7].

– coef–d(j0,Ii) in expression (2) involves the product of the square of the track's weight as it experiences a

bifurcation within a cell and the product of the adjoint fluxes of each pair of tracks at the bifurcation point [see

expressions (28), (29) and (23) in Ref. 7].

– coef–g(j0) and coef–g(j0,Io) in expression (3) involve the square of a track's detector score [see expressions

(35), and (32) and (33) in Ref. 7].
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Fig. 1: General Cell Configuration

The estimates of these coefficients are all subject to greater statistical uncertainties compared with the estimate of a

normal (linear) response as they include the squares of quantities. Estimating the square of the adjoint flux at a phase

space point on a cell boundary, required in the coefficient: coef–d(j0,Ii/Io), is particularly difficult. Therefore an

approximation [the enhanced point surface (eps) approximation (see Ref. 8, Sec. IV)] has been introduced. This

approximation has so far proved satisfactory in that the coefficients coef–d(j0,Ii/Io) are still calculated accurately (at least

in the vast majority of problems) but with much less statistical difficulty.

The time τ (or T in the nomenclature of Ref. 7) is given as follows:

Τ       =      ∑
j0

 
1

F(j0)  

 






coef−t(j0) . F(j0)   +   ∑

2N

Io=1

   [coef−t(j0,Io) . F(K)]
 




                                   (5)

Expression (5) is expression (43) of Ref. 7. Each term within the inner summation brackets represents the CPU

time spent by tracks within each cell K. The sum over Io represents a sum over all cells. The first term within the outer

summation brackets represents the CPU time spent by tracks within each source cell j0. The problem–dependent

coefficients: coef–t(j0) and coef–t(j0,Io) are much easier to estimate compared with the second moment coefficients as

they consist only of linear or first moment–like quantities [see expressions (39), (40) and (42) in Ref. 7].

II.B. The  DSA weight–dependent weight line model

After applying the non–integer approximation and in analogy with the previous Sec. II.A, the three kinds of terms

composing the second moment,  S2, are given as follows:

∆o
w       =      ∑

j0

   ∑
L

Ii=1

   ∑
2N

Io=1

  [coef−dw(j0,Ii/Io)(1) . Ω(J)   −  coef−dw(j0,Ii/Io)(2) . Ω(K)]

                    (6)

∆i
w       =      ∑

j0

   ∑
L

Ii=1

    coef−dw(j0,Ii) . Ω(J)

                                                                                          (7)
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Γw       =      ∑
j0

  

 






coef−g(j0)    +   ∑

2N

Io=1

   [coef−gw(j0,Io) . Ω(K)]
 




                                                      (8)

The time τ (or Tw in the nomenclature of Ref. 8) is given as follows:

Τw       =      ∑
j0

  

 






coef−t(j0)   +    ∑

2N

Io=1

   
 
 coef−tw(j0,Io) . 

1

Ω(K)  

 




                                                       (9)

Expression (6) combines expressions (27), (28), (31) and (33) of Ref. 8. Expression (7) combines expressions

(36), (37) and (38) of Ref. 8. Expression (8) combines expressions (40), (41), (42) and (43) of Ref. 8. Expression (9)

combines expressions (45), (46) and (47) of Ref. 8 with expression (42) of Ref. 7.

As far as the function dependence is concerned, comparing the weight–dependent expressions (6), (7), (8) and

(9) with the weight–independent  expressions (1), (2), (3) and (5), we see that the form is very different for the second
moment contributions from the cell boundaries, ∆w

 o. [In particular we note the presence of negative terms in expression

(6) which increase the statistical error on the estimates of this contribution.] Instead for the other second moment terms

and the time, the form is similar once the cell starting weights Ω() are equated with the inverse of the cell importance

F().

As far as the coefficients are concerned, the weight–dependent coefficients contain a different dependence on the

surface–to–surface probabilities and accumulated weights compared with the weight–independent coefficients [see

expressions (27), (28), (36), (40) and (45) in Ref. 8]. However the coefficients dealing with track bifurcations in

expressions (6) and (7) still contain the square of the adjoint flux at the cell boundary crossing point and the product of

the adjoint fluxes of each pair of tracks at the bifurcation point, respectively.

III. LEARNING THE SECOND MOMENT AND TIME FUNCTION COEFFICIENTS SO AS TO OPTIMIZE THE

MONTE CARLO CALCULATION

The second moment and time function coefficients are estimated with Monte Carlo, using a modified form of

MCNP–4a. They have not been written here for reasons of length. Some indications of their structure are given in Sec.

II and they are found in Refs. 7 and 8 for the weight–independent and weight–dependent models respectively.

First moment–like quantities consist of multiplicative strings whose components are the product of the probability

and the accumulated weight from (cell) boundary to boundary. The second moment and time function coefficients also

consist of multiplicative strings and one component is always the boundary–to–boundary probability. Thus the normal

probability density functions of the transport operator (biased as the case may be) can be used. Only the random

variable (which for a first moment–like quantity is the track weight) is altered depending on which coefficient is

estimated.

Estimating the coefficients with Monte Carlo has some general consequences:

1) The only information available is that gathered by the "estimating" tracks during their random walk (of course).

2) The well–known positive feed–back effects are present, especially marked when an iterative multi–step method

is employed (see for example Ref. 9): that is, a chance low estimate of the importance (in the general sense) of some

phase space region produces variance reduction parameters ("v.r." parameters) that militate against the sampling of that

region in the next step. If as a consequence in the next step that region is not sampled, the v.r. parameters produced at

the end of that step militate still more against the sampling of that region in the next step, etc.

3) The process must be started off by guessing the v.r. parameters to be used at the zero'th step.
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As far as point 3) is concerned, the user must define a first set of v.r. parameters (cell importances or weight lines

depending on which DSA model) to start the procedure off. What is a good set of v.r. parameters to estimate the second

moment and time function coefficients (in particular the second moment) at the first and subsequent steps? Well we

would intuitively expect that a good set of v.r. parameters would be one that tended to sample all phase space rather

more, compared with the optimum set of v.r. parameters for the response of interest. That is, a set that forces the tracks

towards the detector to a somewhat less extent compared with the optimum set of v.r. parameters. Notwithstanding, the

optimum set of v.r. parameters generated at one step was employed at the next step. This has some advantages as will

be shown.

The learning procedure will be illustrated through three sample problems. The first two are not very deep

penetration whilst the third is. The first and the third employ the weight–independent model whilst the second employs

the weight–dependent model.

The quantities of interest in the sample problems are as follows:

– the population first moment or response (R);

– the fractional standard deviation (fsd) on R;

– the population second moment (S2);

– the total CPU time in minutes. [The CPU times refer to an IBM RISC/6000–990, with operating system:

AIX/6000 ver. 3.2.5. The FORTRAN compiler was XL FORTRAN ver. 3 (including optimization).];

– the CPU time in minutes per source particle history (τ) (using NPS, the number of source particle histories);

– the quality factor (q = S2×τ);

– the inverse normalized quality factor (= R2/q ). {This quantity is used as a measure of the quality of the Monte

Carlo calculation rather than the well–known the "figure of merit" (fom) [= (CPU×fsd2)–1] (Ref. 1) because it does not

include the book–keeping time for the accumulation of the second moment and time functions. Actually this time is not

large so that the quantity R2/q is quite close to the figure of merit.};

– the number of failures of the statistical checks on the response provided by MCNP4a (Ref. 1) ("stat fail" that

may take the values 0 to 10). These useful checks provide an added insight into the statistical quality of the response and

essentially concern the normality of the pdf of the mean. They are of course dependent on the CPU time and therefore

not strictly a measure of the quality of the calculation in the sense of the previous paragraph.

The first sample problem is the well–known "Top Hat" (see Fig. 2). This is described in Refs. 8 and 10. No

other variance reduction method is operating apart from cell boundary splitting/RR; therefore the DSA weight–

independent model was employed. The results of the optimization procedure are shown in Table I (taken from Ref. 8).

The first remark to be made is that the second moment and time functions are accumulated from step to step,

notwithstanding the fact that different v.r. parameters are employed at each step. (This is in contrast to the weight

window generator in MCNP4a.) Thus the results in the columns in Table I entitled "Minimization of quality function"

are all cumulative and (with the exception of R) are obtained from the second moment and time functions. The quantity

R2/q under the heading "init" has been evaluated at the current set of cell importances, whilst that under the heading

"opt" has been evaluated at the optimum set of cell importances following operation of the minimization code. Instead

the columns under the heading "Generation of second moment and time functions" are direct estimates obtained from

the results of the particular run of the modified MCNP4a.

From Table I we see that there are a number of ways of verifying that the second moment and time function

coefficients have converged to their proper estimates. Clearly at the optimum, operation of the minimization should not

change much R2/q. We see that at the zero'th step the functions indicate that it can be improved by slightly over a factor

of 3 (137.6→430.4), whilst at the fourth and final step the functions indicate that it can hardly be improved

(422.5→423.2). Furthermore the direct estimate of R2/q at step n is to be compared with the function value R2/q(init) at



8

step n, whilst the function value R2/q(opt) at step n is to be compared with the direct estimate of R2/q at step n+1. We

see in Table I that the first comparison is not satisfied at steps 1 (compare 248.6 and 317.7) and 3 (compare 292.6 and

392.3) (and that this discrepancy is due to the second moment rather than the time) whilst the second comparison is not

satisfied between steps 0 and 1 (compare 430.4 and 248.6) and between steps 2 and 3 (compare 429.4 and 292.6).
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Concrete, density (gm cm    ) :
-3

20 (region A)

10 (region B) 2 (region D)

0.5 (region C)

5 cm

*14 MeV point isotropic neutron source

Tally (neutron leakage current > 1 MeV)

Fig. 2. Top Hat - geometry.

Thus the integral quantities: q and R2/q allow us to know when we have generated reasonable second moment and

time functions and therefore when we have arrived near the optimum. Examining the cell importances by themselves

after each step (there are a total of 72 phase space cells in this problem as there are 3 energy groups) will not allow us to

judge if we have arrived at the optimum or not. Clearly if the importance of some cell changes greatly from one step to

the next, without the function information we are unable to know how important that change is to the quality of the

calculation. In the absence of the functions the only information available is the direct estimate of the figure of merit,
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equivalent to the direct estimate of R2/q in Table I. (In fact the DSA functions contain a great deal more information –

we are able if we wish to predict the second moment, time and calculational quality for any set of cell importances.)

Finally the fact that we have a good agreement between the direct estimate and the function value of R2/q means

that the eps approximation is good and the optimum reached is a real one. For this problem the DSA gives a

calculational quality roughly double that of adjoint flux–based methods for controlling the population (see Ref. 10). It is

thought that this is due to the two different contributing paths – through the high density regions A and B, and radially

from region A to the low density regions C and D followed by streaming through the void towards the top of region B.

TABLE I

Top Hat. Iterative procedure to arrive at the optimum cell importances.

Step Generation of second moment and time functions Minimization of quality function

CPU
(min)

R fsd
 (%)

stat
fail

S2 τ q R2/q R S2 τ q R2/q
(init)

R2/q
(opt)

0 4.0 4.02–5 4.46 2 1.08–6 1.08–5 1.17–11 138.3 4.02–5 1.07–6 1.09–5 1.18–11 137.6 430.4

1 4.0 4.39–5 3.33 2 3.14–7 2.47–5 7.77–12 248.6 4.13–5 2.23–7 2.42–5 5.38–12 317.7 427.2

2 4.0 4.41–5 2.56 1 1.67–7 2.85–5 4.76–12 408.1 4.19–5 1.51–7 2.76–5 4.16–12 422.7 429.4

3 4.0 4.57–5 3.04 2 2.50–7 2.86–5 7.15–12 292.6 4.26–5 1.65–7 2.81–5 4.62–12 392.3 411.6

4 8.0 4.41–5 1.78 0 1.59–7 2.83–5 4.52–12 429.8 4.30–5 1.51–7 2.90–5 4.37–12 422.5 423.2

The second sample problem is a three leg penetration in high density concrete (see Fig. 3). This is described in

Ref. 8. There is a DXTRAN sphere (Ref. 1) placed in the middle of each duct. These three spheres produce a wide

range of track weights so a weight control is indicated, thus the DSA weight–dependent model was employed. The

results of the optimization procedure are shown in Table II (taken from Ref. 8). The v.r. parameters are now the cell

weight lines rather than the cell importances. Apart from this, the optimization procedure is similar to that of the DSA

weight–independent model. In particular the optimum weight lines after step n are used in step n+1 to continue to

accumulate the second moment and time function coefficients.

There are two seeming inconsistencies in the results in Table II:

– The function value R2/q(init) (48.7) is not consistent with the function value of R (3.95E–8 ) and q (1.10E–16)

at step 0. This is because at each step the functions are automatically adjusted before operation of the minimization code

(by eliminating negative coefficients present in the second moment due to statistical error, making the second moment

terms self–consistent and making the time function consistent with the second moment function). The function values of

S2, τ and q are given before adjustment whilst R2/q(init) is given after adjustment. [In Ref. 8, in the equivalent Table

XII, R2/q(init) is given before adjustment.].

– The direct estimate and function value of the time at step 1 are rather different (1.42E–4 and 8.70E–5) although

we expect the second moment rather than the time to exhibit possible differences. This discrepancy in the time is due to

the fact that at the previous step 0, many cells gave no contribution to the second moment. Consequently these cells

were eliminated from the optimization and were not assigned a weight line after step 0. At step 1 no splitting or Russian

roulette game was played on tracks entering these cells. Although time is spent by tracks in these cells and is recorded in

the direct estimate, this time is not recorded in the function value which is therefore an underestimate.

The main feature of Table II compared with Table I is an underestimation in the function value of the second

moment compared with the direct estimate. [There are strong indications that this is due to the non–integer
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approximation (see Ref. 8).] This gives rise to an overestimation in R2/q. This has two consequences. Firstly we are

unsure how far our optimum at step 5 is away from the real optimum. In Ref. 8 first indications (on the Top Hat

problem) are that we are not far from the real optimum. Secondly we are unable to control the convergence of the

optimization procedure in as close a way as in the previous problem as we cannot compare the direct estimate and

function value of R2/q as we could before. However we do know that the function value of R2/q is always an

overestimate because the second moment is always underestimated and experience so far is that function value of the

second moment has never been less than 60% of the direct estimate.

For this problem the weight–dependent DSA gives a calculational quality similar to that of adjoint flux–based

methods for controlling the track weight (see Ref. 8).

20 cm 7.3 gm cm     portland concrete-3

point
isotropic
14 MeV
neutron
source

Tally
(total
neutron
current
exiting
from 
duct)

1

Fig. 3. Dog leg penetration in high density concrete – geometry.
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TABLE II

Dog leg penetration in high density concrete. Iterative procedure to arrive at the optimum starting weights.

Step Generation of second moment and time functions Minimization of quality function

CPU
(min)

R fsd
(%)

stat
fail

S2 τ q R2/q R S2 τ q R2/q
(init)

R2/q
(opt)

0 6.0 3.95–8 12.1 2 5.14–13 2.42–4 1.25–16 12.5 3.95–8 4.54–13 2.42–4 1.10–16 48.7 371.6

1 4.0 3.22–8 8.39 1 1.69–13 1.42–4 2.40–17 43.1 3.58–8 9.63–14 8.70–5 8.38–18 154.4 226.0

2 7.0 3.05–8 3.66 0 6.23–14 1.22–4 7.60–18 122.6 3.31–8 5.14–14 1.19–4 6.09–18 180.0 187.0

3 4.0 3.30–8 4.73 0 6.75–14 1.31–4 8.85–18 122.8 3.30–8 4.55–14 1.35–4 6.17–18 177.0 181.9

4 10.0 3.36–8 3.27 4 7.92–14 1.40–4 1.11–17 101.8 3.32–8 5.27–14 1.37–4 7.22–18 153.2 174.9

5 10.0 3.29–8 2.87 0 6.20–14 1.35–4 8.38–18 129.5 3.32–8 4.83–14 1.34–4 6.47–18 169.9 170.1

With the relatively high figures of merit (about 400 and 100) in the first two sample problems, it was easier to

demonstrate the operation of the optimization procedure. In contrast the third sample problem is a deep penetration

calculation. It is a simplification, whilst retaining the variance characteristics, of a real problem of calculating the

activation rate in a wire in the core of a WWRSM–type research reactor. The geometry is shown in Fig. 4. (The wire in

Fig. 4 is not to scale – it has a diameter of 0.5 mm.) The outer boundaries are reflection surfaces. The fission source is

fixed and is distributed homogeneously outside the detector channel. Neutron production from fissions is suppressed.

homogenised fuel and 
moderator

4 cm

detector channel

wire

Fig. 4. Activation rate in wire in reactor core – geometry

12

11

10

9
8

cells 1 (inside) to 7 (outside)
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The thinness of the wire is the first factor that contributes to the penetration. The response of interest is the sum of

the (n,γ) reaction rates in 94Zr and 96Zr. The second factor that contributes to the penetration is the resonance structure

of both the 94Zr(n,γ) and the 96Zr(n,γ) cross–sections. The 96Zr(n,γ) cross–section (which accounts for approximately

90% of the total response) is shown in Fig. 5. A total of 15 energy groups were employed with a structure that took

into account both the resonances in Fig. 5 as well as those in the 94Zr(n,γ) cross–section. The upper limits of these

groups were as follows: 20 MeV, 14.5 keV, 13 keV, 7.8 keV, 7.5 keV, 5.7 keV, 5 keV, 4.9 keV, 4.2 keV, 3.7 keV,

2.5 keV, 2 keV, 325 eV, 280 eV and 10 eV.

As there is no weight variation in this problem apart from that due to splitting/RR at the cell boundaries, the DSA

weight–independent model was used. The optimization procedure is shown in Table III. Studying Table III we see that:

1) It is very difficult to arrive at the optimum and even after step 11 (with a total of 106 hours of accumulated

CPU time) the procedure has still not converged.

2) The direct estimate of R2/q (under "Generation of second moment and time functions") does not at first sight

seem to be improving as the optimization progresses. However when we examine the response value R under the same

heading, we see that in the first steps, relatively high values of R2/q correspond to underestimates in R. Only in the last

three steps do we obtain both a relatively high value of R2/q and a R that does not seem an underestimate.
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TABLE III

Activation rate in wire in reactor core. Iterative procedure to arrive at the optimum cell importances.

Step Generation of second moment and time functions Minimization of quality function

CPU
(min)

R fsd
 (%)

stat
fail

S2 τ q R2/q R S2 τ q R2/q
(init)

R2/q
(opt)

0 24.0 9.96–6 22.35 3 8.41–7 1.20–4 1.01–10 0.98 9.96–6 8.41–7 1.20–4 1.01–10 0.98 253.9

1 20.1 9.74–5 65.31 7 4.70–4 1.41–4 6.64–8 0.14 4.55–5 1.95–4 1.38–4 2.69–8 0.077 52.0

2 38.0 2.99–5 16.45 2 1.46–6 5.14–4 7.52–10 1.19 4.28–5 2.15–7 5.57–4 1.20–10 15.3 85.0

3 32.0 2.56–5 13.21 3 1.06–6 2.83–4 3.00–10 2.19 3.92–5 1.27–7 3.00–4 3.82–11 40.1 58.4

4 36.1 2.77–5 24.57 8 3.44–6 3.97–4 1.37–9 0.56 3.75–5 4.96–7 4.17–4 2.07–10 6.8 42.0

5 212.1 3.47–5 7.37 2 2.27–6 5.05–4 1.15–9 1.05 3.64–5 2.14–7 5.13–4 1.10–10 12.1 30.0

6 76.1 3.69–5 9.47 2 1.39–6 5.49–4 7.62–10 1.79 3.65–5 1.34–7 5.54–4 7.44–11 17.9 26.0

7 100.1 3.24–5 12.22 4 2.63–6 4.93–4 1.29–9 0.81 3.59–5 2.21–7 4.96–4 1.09–10 11.8 24.7

8 540.0 4.44–5 10.79 8 2.05–5 4.97–4 1.02–8 0.19 3.96–5 8.16–6 4.96–4 4.05–9 0.39 19.2

9 1079. 3.78–5 3.20 1 2.71–6 4.79–4 1.30–9 1.10 3.88–5 2.52–7 4.73–4 1.19–10 12.6 18.4

10 1024. 3.88–5 4.54 6 5.35–6 4.88–4 2.61–9 0.58 3.88–5 6.72–7 4.68–4 3.15–10 4.77 15.9

11 3181. 3.80–5 1.93 2 2.79–6 5.05–4 1.41–9 1.03 3.84–5 4.94–7 5.02–4 2.48–10 5.95 15.4

3) At each step there is an indicated improvement in the functional value of R2/q that does not seem to be borne

out with the direct estimate. (This is another sign that the optimization procedure has not converged yet, or in other

words that the estimate of the second moment coefficients is still poor.)

4) Notwithstanding the fact that the weight–independent DSA model is employed so that no approximation is

necessary to render the second moment separable, there is a very substantial difference between the direct estimate and

the function value of the second moment. (At step 11 the function value is a factor 5.6 less than the direct estimate.)

This discrepancy can only be due to the eps approximation. It is suspected that the resonance structure in both the
94Zr(n,γ) and 96Zr(n,γ) cross–sections is of such a complexity that the binning of the energy into 15 groups is not

sufficient and is responsible for the breakdown in the approximation.

Concerning point 4), the fact that the function value of the second moment is so badly underestimated, leads us to

wonder whether the "optimum" is also poor. It is interesting to compare this optimum with that of approaches based on

the inverse of the adjoint flux estimate. To this end, weight windows were generated (see Ref. 1) at three different

points during the optimization procedure: at steps 8, 9 and 11. The CPU times of these steps: 540, 1079 and 3181 min.

respectively (see Table III) was the same as the total cumulative CPU time of the optimization procedure up to but not

including the step in question. This just means that an equal amount of CPU time was spent on generating the DSA

function coefficients as was spent on generating the weight window. (If anything the quality of the CPU time spent on

generating the weight window was better than that spent on generating the DSA information if we assume that

parameters that are good for the first moment are also good for the second.) The comparison between the DSA runs and

the runs with the generated weight window ("gen. ww") is shown in Table IV. (In Table IV the fom rather than R2/q is

used as a measure of the quality of the calculation.) We see that there is a difference in quality of a factor of 2, 9 and 8 at
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the steps 8, 9 and 11 respectively. However at step 8 the result with the generated weight window looks an

underestimate so the factor 2 is unreliable. Thus notwithstanding the dire underestimate in the second moment function

value and the fact that the optimization procedure does not yet seem to have converged, the DSA is performing relatively

well with respect to an adjoint flux–based method.

TABLE IV

Activation rate in wire in reactor core. Comparison of DSA results with weight window generator results.

step CPU

(min)

NPS R fsd (%) stat fail fom

8 (DSA) 540.0 893398 4.44–5 10.79 8 0.16

   (gen. ww) 1078.6 370261024 3.24–5 10.34 4 0.087

9 (DSA) 1078.5 1843940 3.78–5 3.20 1 0.90

   (gen. ww) 1080.0 300535787 3.57–5 9.72 3 0.098

11 (DSA) 3181.1 5160311 3.80–5 1.93 2 0.84

      (gen. ww) 4875.2 1641270050 3.95–5 4.25 0 0.11

To try to understand the reason behind the difference in the quality of the results from the two methods, in Table

V are shown the DSA cell importances ("DSA ci") employed at step 11 for a sample of three energy groups (the lower

two containing important resonances) in each of the 12 spatial cells (see Fig. 4). The lower bounds of the generated

weight window values were inverted and normalized to the DSA cell importance in the energy group 325–280 eV in cell

8. Comparing the resulting values ("1/wwlb") with the DSA cell importances we see that the weight window generator

produces a much higher multiplication in the inner part of the detector channel (cells 1 to 4) compared with the DSA.

Such effects have also been noted with streaming problems in ducts (see Ref. 10).

TABLE V

Activation rate in wire in reactor core. Comparison of DSA cell importances at step 11 with generated weight window.

cell > 14.5 keV 5.0 – 4.9 keV 325 – 280 eV

DSA ci 1 / wwlb DSA ci 1 / wwlb DSA ci 1 / wwlb

1 6.95+1 1.57+2 4.24+3 1.99+4 2.76+4 2.78+5
2 1.39+1 1.89+1 1.21+2 2.91+2 1.38+4 1.53+4
3 6.95+0 1.37+1 1.21+2 2.74+2 1.28+4 7.64+3
4 2.02+1 1.52+1 1.21+2 6.99+1 1.28+4 2.29+3
5 3.11+0 1.48+1 1.21+2 1.78+2 6.39+3 2.31+3
6 1.56+0 1.45+1 3.34+1 1.17+2 6.39+2 1.76+3
7 1.56+0 1.46+1 6.35+0 1.25+2 3.20+2 1.69+3
8 7.79–1 1.26+1 6.35+0 6.53+1 3.20+2 3.20+2
9 7.79–1 9.94+0 3.11+0 5.10+1 3.20+2 4.25+1

10 7.79–1 5.84+0 7.79–1 1.02+1 1.86+1 1.49+0
11 3.89–1 4.17+0 3.34–1 2.04+0 1.86+1 4.75–1
12 3.89–1 3.22+0 1.13–1 7.58–1 1.74–2 1.77–1
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IV. POINTS FOR DISCUSSION

1) Might it be the case that the relatively complex form of the dependence of the quality function on the variance

reduction parameters [especially in the case of the weight–independent splitting/RR model – see expressions (1) to (5)],

makes the resulting "optimum" variance reduction parameters less sensitive to statistical errors in the information (the

second moment and time function coefficients) that the optimizing method requires? Could this effect offset the

statistical difficulty of estimating the second moment function coefficients?

2) The DSA models are at present written for fixed source problems only. The third sample problem in Sec. III

("Activation rate in wire in reactor core") was originally a keff calculation. However, referring to the source iteration

method for estimating keff, the DSA, as it is currently implemented, treats each fission source generation independently

instead of passing the information from one generation through the fission source to the next generation. Under the

latter circumstances, over a number of generations, correlations will develop: neutrons giving detector contributions in

one generation will undergo fission and the resulting fission neutrons will give detector contributions, etc. As the DSA

is in principle able to take such correlations into account, it would be interesting to compare it with adjoint flux–based

approaches on such problems.

3) It is intended in the future to study the operation of variance reduction in high energy transport problems (GeV)

in which there is a large amount of natural bifurcation (cascades or showers). This bifurcation contributes to the second

moment and is explicitly taken into account by the DSA. Experience so far in problems with substantial volumetric

bifurcation in the energy range < 20 MeV [usually due to the presence of DXTRAN spheres (Ref. 1)] is that this is not

the major contribution to the second moment.

4) The solid mathematical basis of the DSA has the consequence of allowing its application to fields outside the

one for which it was specifically developed. In particular two possible fields of application have appeared:

– The problem of optimizing variance reduction parameters to more than one response, with the objective of

achieving a comparable (and minimum) fractional error associated with each response in a given CPU time. A possible

approach is to apply the DSA after forming a compound second moment function by summing the second moment

functions of each individual response, having normalized each function by dividing the coefficients by the squares of

the respective first moments.

– For some problems (e.g. cosmic ray showers in the earth's atmosphere), the second (and higher) moments of a

response associated with the shower are themselves quantities of interest as well as the first moment. Currently

moments higher than the first can only be estimated by means of an analogue calculation, which can be extremely long.

With the DSA, the second moment may be found in a calculation employing either weight–independent or weight–

dependent splitting/RR between space/energy cells. Instead as far as moments higher than the second are concerned, the

theory needs to be extended before they can be estimated in an analogous fashion.

V. SUMMARY

Operation of the Direct Statistical Approach (both the weight–independent and weight–dependent models) with

particular reference to its learning aspects, has been demonstrated through three sample problems. Some comparisons

with methods for population and weight control based on the inverse of the adjoint flux estimate have been made.
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